Mark Scheme (Results)

January 2021
Pearson Edexcel International GCSE In Chemistry (4CH1) Paper 1CR and Science (Double Award) (4SDO) Paper 1CR

## Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

## Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2021
Publications Code 4CH1_1CR_2101_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

## General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 1 (a) | copper |  | 1 |
| (b) | glucose/water |  | 1 |
| (c) | air |  | 1 |
| (d) | nitrogen/oxygen |  | 1 |
| (e) | copper |  | 1 |
| (f) | oxygen and sulfur | in either order | 1 |

(Total for Question 1 = 6)

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 2 (a) <br> (b) (i) <br> (ii) | Any two from the following: <br> M1 contains 3 dyes <br> M2 contains (dye) A <br> M3 contains (dye) B <br> M4 does not contain (dye) C / contains an unknown <br> dye OWTTE <br> (Ink 2) is insoluble (in solvent/water) <br> (repeat) using different solvent | ALLOW does not contain (dye) A/B/C <br> ALLOW named alternative solvent eg alcohol/ethanol | $2$ <br> 1 <br> 1 |
| (c) | M1 correct measurement of distance moved by spot <br> AND correct measurement of distance moved by solvent <br> M2 use and evaluation of $\mathrm{R}_{\mathrm{f}}=\frac{\text { distance moved by spot }}{\text { distance moved by solvent front }}$ <br> M3 answer to 2 sig fig | ALLOW 5.4-5.6 <br> ALLOW 7.9-8.1 <br> Expected: $\begin{aligned} & \frac{5.5}{8.0}=0.6875 \\ & =0.69 \end{aligned}$ <br> ALLOW ECF from M1 <br> M2 <br> correct answer with no working scores 3 | 3 |

(Total for Question 2 = 7)

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| $3 \text { (a) }$ <br> (b) (i) | alkanes <br> A boiling point is the correct answer because fractional distillation depends on differences in boiling point B is not correct because fractional distillation does not depend on differences in density $\mathbf{C}$ is not correct because fractional distillation does not depend on differences in melting point <br> D is not correct because fractional distillation does not depend on differences in solubility |  | 1 1 |
| (b) (ii) <br> (c) | 1 mark for each correct line from boxes on left <br> explanation including the following points: <br> M1 (common impurity in fuels is) sulfur <br> M2 sulfur burns/combusts/reacts (in air/oxygen) to form sulfur dioxide/ $\mathrm{SO}_{2}$ <br> M3 sulfur dioxide/ $\mathrm{SO}_{2}$ dissolves in/reacts with rain/water to form acid rain | If more than one line from a box on left do not award mark for that box <br> If M2 M3 not scored ALLOW 1 mark for reference to sulphur dioxide $/ \mathrm{SO}_{2}$ and acid rain | 3 |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 3 (d) (i) | cracking |  | 1 |
| (ii) | M1 (catalyst) silica/alumina M2 (temperature) 600-700 $\left({ }^{\circ} \mathrm{C}\right)$ | ALLOW silicon dioxide/aluminium oxide ALLOW formulae ALLOW zeolite | 2 |
| (iii) | $\mathrm{C}_{13} \mathrm{H}_{28} \rightarrow \mathrm{C}_{8} \mathrm{H}_{18}+$ |  |  |
|  | $\begin{aligned} & \mathrm{M} 1 \mathrm{C}_{3} \mathrm{H}_{6}+ \\ & \mathrm{M} 2 \mathrm{C}_{2} \mathrm{H}_{4} \end{aligned}$ | in either order ALLOW structural formulae | 2 |
|  |  | ALLOW 1 mark for single product $\mathrm{C}_{5} \mathrm{H}_{10}$ |  |

(Total for Question 3 = 13)

(Total for Question 4 = 9)

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 5 (a) | (thermal) decomposition (1) |  | 1 |
| (b) | any two of the following: |  | 2 |
|  | M1 (use the same) amount of metal carbonate | ALLOW mass |  |
|  | M2 (use the same) sized pieces/surface area |  |  |
|  | M3 (use the same) volume of limewater | ALLOW amount |  |
|  | M4 (use same) size flame / distance of flame from boiling tube OWTTE |  |  |
| (c) | bubbles are air (from tube) / caused by air (expanding on heating) | ALLOW gas in tube expands (on heating) | 1 |
| (d) | explanation including |  | 2 |
|  | M1 (when limewater turns milky/cloudy it) shows carbon dioxide produced | ALLOW carbon dioxide comes from carbonate (reacting/decomposing) |  |
|  | M2 showing metal carbonate has reacted/decomposed |  |  |
| (e) (i) | M1 (from) green M2 (to) black | IGNORE qualifiers eg light | 2 |
| (ii) | $\mathrm{CuCO}_{3} \rightarrow \mathrm{CuO}+\mathrm{CO}_{2}$ | ALLOW products in either order | 1 |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 5 (f) (i) <br>    <br>    <br>    <br>    | M1 the lower the metal is (in the reactivity series) <br> M2 the more easily the (metal) carbonate reacts/decomposes <br> repeat (the investigation) using different / other / more (metal) carbonates | ALLOW the less reactive a metal is <br> ALLOW the more easily the (metal) carbonate produces carbon dioxide <br> ALLOW references to the less time the (metal) carbonate takes to react/decompose <br> ALLOW references to the faster the (metal) carbonate reacts/decomposes <br> ACCEPT reverse arguments | $2{ }^{2} 10$ |

(Total for Question 5 = 12)


| 6 (d) | explanation including <br> M1 (increase/decrease) surface area <br> M2 increase surface area by using smaller pieces <br> of zinc <br> M3 more (successful) collisions per second/unit <br> time (so rate increases) | ACCEPT more frequent <br> collisions <br> IGNORE more <br> chance/probability of <br> collision <br> M2 M3 ACCEPT reverse <br> arguments | 3 |
| :--- | :--- | :--- | :---: |

(Total for Question 6 = 12)

| Question <br> number | Answer | Notes | Marks |
| :---: | :--- | :--- | :---: |
| 7 (a) | description including <br> (formation of ions in lithium chloride involves) <br> M1 lithium (atom) losing electron <br> M2 chlorine (atom) gaining an electron <br> (formation of covalent bonds in hydrogen <br> chloride involves) <br> M3 sharing a pair of electrons (one electron from <br> each atom) | ALLOW correct dot-and- <br> cross diagrams for ions <br> for M1 and M2 | ALLow correct dot-and- <br> cross diagram showing <br> shared pair in hydrogen <br> chloride for M3 |


| 7 (b) | explanation including five of the following points: <br> (lithium chloride) <br> M1 giant (ionic) structure <br> M2 strong (electrostatic) forces of attraction <br> M3 between oppositely charged ions <br> (hydrogen chloride) <br> M4 simple molecular structure <br> M5 weak intermolecular forces of attraction <br> M6 more (heat/thermal) energy needed to overcome forces/break bonds in lithium chloride (than intermolecular forces in hydrogen chloride) OWTTE | ALLOW giant lattice <br> ALLOW strong bonds <br> ACCEPT positive and negative ions <br> If any reference to molecules/atoms/covalent bonds/intermolecular forces/metallic bonds cannot score M2 M3 M6 <br> ALLOW weak bonds between molecules <br> ACCEPT reverse argument <br> If description/implication of breaking covalent bonds in hydrogen chloride cannot score M5 M6 | 5 |
| :---: | :---: | :---: | :---: |

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
8 (a) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
explanation linking \\
M1 (molecules/compounds) having same molecular formulae \\
M2 but different structural/displayed formulae \\
M1 displayed formula of but-1-ene \\
M2 displayed formula of but-2-ene
\end{tabular} \& \begin{tabular}{l}
ALLOW different structures \\
ALLOW different arrangement of atoms \\
IGNORE bond angles \\
ALLOW displayed formula of methylpropene
\end{tabular} \& 2

2 <br>
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
8 (b) (i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
explanation linking \\
M1 molecule is unsaturated as contains (carbon to carbon) double bond \\
M2 molecule not a hydrocarbon as contains oxygen \\
addition \\
M1 correct repeat unit structure \\
M2 extension bonds, brackets and n
\end{tabular} \& \begin{tabular}{l}
ACCEPT does not contain hydrogen and carbon only \\
n can be anywhere after bracket extension bonds do not have to go through brackets M2 DEP M1 or near miss
\end{tabular} \& 2

1

2 <br>
\hline
\end{tabular}



| (ii) | global warming/climate change | IGNORE greenhouse <br> effect | 1 |
| :--- | :--- | :--- | :--- |

(Total for Question 8 = 15)

| Question <br> number | Answer | Notes | Marks |
| :--- | :--- | :--- | :---: |
| (a) | to keep out of contact/prevent reaction with <br> air/oxygen/water/moisture | ALLOW they react with <br> air/oxygen/water/moisture | 1 |
| (b) $\quad$ (i) | similarity: both fizz/move on surface/ produce flame | ALLOW both melt/form a <br> ball/produce a gas/ <br> produce hydrogen/form <br> an alkaline solution | 2 |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 9 (d) (i) | M1 correct temperature change/ $\triangle T$ <br> M2 correct substitution into $\mathrm{Q}=\mathrm{m} \times \mathrm{c} \times \Delta \mathrm{T}$ <br> M3 correct evaluation <br> Example calculation: <br> $\mathrm{M} 1 \Delta \mathrm{~T}=(26.5-19.9) \mathrm{OR} 6.6$ <br> $\mathrm{M} 2 \mathrm{Q}=100 \times 4.2 \times 6.6$ <br> $\mathrm{M} 3=2800(\mathrm{~J})$ <br> M1 answer to M3 from (i) $\div 0.05$ <br> M2 correct evaluation in $\mathrm{kJ} / \mathrm{mol}$ with negative sign <br> expected answer <br> M1 $2800 \div 0.05$ OR 56000 (J) <br> M2-56 (kJ/mol) | M2 ECF M1 <br> M3 ECF M2 <br> IGNORE any sign <br> ALLOW 2770, 2772 <br> correct answer without working scores 3 <br> 2770 gives 55400 <br> 2772 gives 55440 <br> negative sign required <br> ACCEPT -55.4 <br> ACCEPT -55.44 <br> ACCEPT -55 <br> correct answer without working scores 2 | 3 |

(Total for Question $9=13$ )

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| $10 \quad \text { (a) } \quad \text { (i) }$ <br> (ii) | neutralisation <br> acid donates proton(s)/base accepts proton(s) | ALLOW acid - base <br> ALLOW metal oxide for base | 1 1 |
| (b) (i) | description including <br> M1 appropriate use of at least three named pieces of apparatus <br> AND any four of the following points <br> M2 add copper(II) carbonate to (dilute sulfuric) acid (a spatula/little at a time and stir after each addition) <br> M3 until no more effervescence <br> M4 filter (to remove excess copper(II) carbonate/to obtain (copper(II) sulfate) solution) <br> M5 heat/warm filtrate/(copper(II) sulfate) solution until crystals start to appear (solution saturated) OWTTE <br> M6 filter to obtain (the saturated) solution | ALLOW until no more reacts/dissolves ALLOW until in excess <br> IGNORE if continue and prepare crystals instead of saturated solution | 5 |
|  | M1 calculation of actual mass of crystals obtained <br> M2 division by expected mass of crystals (6.4) and multiplication by 100 to convert to percentage <br> M3 correct to 1 dp <br> Example calculation <br> M1 (6.40-1.80 = ) 4.6(0) <br> $\mathrm{M} 2(\%$ yield $=) \frac{4.6}{6.4} \times 100$ OR $71.875(\%)$ $\text { M3 = } 71.9 \text { (\%) }$ | M2 ECF M1 <br> M3 DEP M2 | 3 |



